

# تحليل پايدارى قطعات با هندسه شكل - آزاد در قيد و بندها 



```
1 - دانشجوى دكترى، مهندسى مكانيك، دانشگاه تربيت مدرس، تهران
2 - 2 دانشيار، مهندسى مكانيك، دانشكاه تربيت مدرس، تمران
```



| چֶكيده | اطلاعات مقاله |
| :---: | :---: |
|  | مقاله |
|  | دريافت: 01 دیى 1394 |
|  | $\text { ارائه در سايت: } 25 \text { بهمن } 1394$ |
|  | كليد وازثانّن: |
|  | اصل كمترين اندازه نيروها |
|  | تحليل پايدارى |
|  | تماس اجسام صلب |
| هريكى از مراحل بررسى شلى . | طراحى قيد و بندها |
|  | هندسه شكل - از |


نتايج، بيانگر توانايى بالاى اصل كمترين اندازه نيروها براى آناليز پايدارى قطعات شكل - آزاد در مازول صحتسنجى مجموعه فعاليتهایى
طراحى قيد و بند به كمى رايانه است.

## Stability analysis of free-form workpieces in fixtures

Hadi Parvaz, Mohammad Javad Nategh*

Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
*P.O.B. 14115-111 Tehran, Iran, nategh@modares.ac.ir

ARTICLE INFORMATION
Original Research Paper
Received 22 December 2015
Accepted 21 January 2016
Available Online 14 February 2016

## Keywords:

Fixture Design
Free-form Geometry
Minimum Norm Principle
Rigid Body Dynamics
Stability Analysis


#### Abstract

The stability analysis of workpiece in fixtures is considered as one of the stages of the fixture verification system. The stability of free-form workpieces in fixtures is affected by different agents including weight, locators, and clamps and machining wrenches. In this study, a mathematical model has been presented for part stability analysis based on the minimum norm principle that led to a nonlinear quadratic optimization problem. The solution to this problem is the reaction forces at the contact points between workpiece and locators. The study includes the workpiece stability analysis at the loading stages, determination of stability span for workpiece and investigating the effect of the base locator's distances on the workpiece stability through examples. A turbine blade model was incorporated as the case study to evaluate the suggested model capabilities in stability analysis. The loading procedure of this part into the fixture was categorized into sequential stages and its stability was investigated in contact with the locators. The results included the stability span of [ $22^{\circ}-38^{\circ}$ ] for the workpiece on base locators, increased stability by the distanced base locators and the confirmation of the main locating plan through the stability verification at the loading stages. The results showed the model efficiency and accuracy in analyzing the free-form part stability in contact with the fixture elements. The proposed dexterous model can be integrated into the CAFD platform to be used at the early stages of locating and clamping system design applications.


$$
\begin{aligned}
& \text { تماس با جاسازها و بستها بايد در هر شرايطى پايدارى خود را حفظ كند. }
\end{aligned}
$$

خارجى هماچون وزن، جاسازى و بست تعريف كرد [3]. قطعهكار در هـ هنعًام
بار گذارى در داخل قيد و بند، تحت نيرو - ممانهاى ناشى از وزن و جاسازها

[^0]> 1 - مقدمه
> سيستمهاى صحتسنجى قيد و بند با هدف نيل به طرح جا جاسازى و بست

1- Accessibility

منظور، بيشترين جابهجايى ناشى از نيروهاى ماشينكارى در نقاط تماس

 بهدست آمد. آن طرح قيد و بندى كه كم كمترين مقدار براى پارارامتر بيشترين

 كرفتن پايدار قطعات در رباتيك از جهاتى مشاتى آبابه با طراحى قيد و و بند است چراكه درجات آزادى قطعهكار توسط انگَشتان ربات بايستى بهكانونهاى







 [14] ارائه كرديد. روشى بر مبناى استفاده از از اطلاعات سنسور نصبري




 مبناى احتمالات، اطلاعات سنسورى و يادكيرى ماريني






 بيشتر مى كند. چرّوهش حاضر در ادامه فعاليتى است كه در [19] براى طراحى سيستم
 محدود كردن درجات آزادى قطعهكار با بيشترين شدت ممكن بار بارينوان قانون اصلى براى طراحى لى -اوت جاسازى قطعات شكل- آزاد آر مثل پره توربين
 تداخل بين جاسازها تقسيم و سيستم جاسازى با با روش 1-2-3 طراحي




 آن چه در بالا اشاره ترديد، پثوهشا
 حالت دوبعدى قطعهكار، اعمال فرضيات ابتكارى همچون نرخ افزايش ضريب

[^1]قرار مى گيرد. پس از بارگذارى، اعمال بست (ها) نيز منجر به افزونشدن
 ممانها در مرحله اوليه طراحى سيستم بهكَونهاى تعيين مىشود كه قطعهكار همواره در تمام اين مراحـا خود را در تماس با اين اجزا حفظ نمايد. پس از بار گَذارى قطعهكار و و اعمال






 تضمين شود. عوامل مؤثر در پايدارى قطعهكار در قيد و بند شامل طرح جاسازى، تغيير شكل قيد و بند، نيرو و توالى بست است. چوى پاري


 لى و كاتكوسكى [6] با تكيه بر مدلسازى اصطكاك در در بستها بار با به محاسبه نيروى لازم براى بست جـي پرداختند. وى با تعريف سطوح محدودكننده در فضاى نيا نيرو - ممان و و فرض




 پپزوهش بود. در [8]، مدلى براى تعيين سطوح و موقعيت اعمال جاسازه ها و و

 بست مورد صحتسنجى قرار گرفت. براى آناليز پايدارى بست، باريّ با فرض
 حالت دوبعدى با استفاده از معادلات تعادل استان استاتيكى (جهت تساي محاسبه نيروها) اكتفا شد. روى و ليائو [9] به مطالعه كمى پايدارى قطعهكار





 ارائه كرد. ايشان معيارى كمى به نام CSI , اا كه براساس زار زاويه نيروى
 كرد، براى سنجش پايدارى قطعهكار ارائه كرد. در [11]، تأثير توالى اعمال


 قطعهكار و قيد و بند بر پايدارى قطعهكار مورد مطالعه قرار داد. براى اين اين

- مقدار ضريب اصطكاك در تمام نقاط تماس مشخص و برابر است (در منا آناليز ارائششده مىتوان مقدار ضريب اصطكاك را در هر نقطه تماس متفاوت اعمال كرد) - هندسه قطعهكار از نوع شكل- آزاد بوده و مقادير بردارهاى نرمال و
 - موقعيت اعمال جاسازها مشخص است.

شكل 1 نشاندهنده يك قطعه با هندسه شكل- آزاز اد همراه با سيستم جاسازى طراحىشده با شش جاساز است. مجموعه داراى يك دستگا
 جاسازها است. قطعه تحت اثر يك نيرو - ممان برآيند خارجى We قرار گرفته

استفاده از اصل كمترين اندازه نيروها براى رفع نامعينى استاتيكى، در
قالب مسأله بهيندسازى غيرخطى بهصورت معادله (1) قابل ارائه است. Minimize $|\varphi|$ with constraints:
$T \varphi+W_{e}=0$
$\left(f_{n}\right)_{i} \geq 0$
$\left(f_{t_{1}}^{2}+f_{t_{2}}^{2}\right)_{i} \leq\left(\mu f_{n}\right)_{i}^{2}$
كه در آن، ا ا ا اندازه نيروهاى عكسالعمل در نقاط تماس،
در نقطه تماس iام بهصورت مؤلفه مماسى اول بردار نيرو، ${ }^{\text {مؤل }}$ مؤلفه مماسى دوم تبديل از دستگاه مختصات محلى به دستگاه مختصات جهانى و We ${ }^{\text {د }}$ نيرو ممان برآيند خارجى است.

## 1-2 - تابع هدف

تابع هدف در مسأله بهينهسازى ارائهشده در رابطه (1) بهاصورت انداز انـازه (نرم)
 كه بهصورت $\varphi$ در رابطه (1) ياد شده است را مىتوان بها بارورت رابطه (2) عنوان كرد.
$\varphi=\left(F_{1}, F_{2}, . ., F_{6}\right), F_{i}=\left(f_{n}, f_{t_{1}}, f_{t_{2}}\right)_{i}$
تابع هدف $\varphi$ داراى شش نيروى عكسالعمل در شش جاس اراز است كه
 (براساس با شكل 1) هستند. اندازه بردار هدف (ا 1 ( 1 (|) از رابطه (3) محاسبه و

در برينهسازى استفاده شده است.
$|\varphi|=F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+F_{5}^{2}+F_{6}^{2}$
مطابق با قيد شماره 2 در رابطه (1)، مقدار پارامتر
تا تماس قطعهكار و جاسازها همواره حفظ شود.
 پارامترها با جهت محاسبهشده، معكوس اين جهات است.

## 2-2-2 قيود بهينه سازى

براى محاسبه نيروهاى عكسالعمل در جاسازه


 بين قطعهكار و جاسازها و لزوم مثبت بودن نيروهاى عكا عكسا العمل محاسبهشده است. قيد سوم نيز شرايط اصطكاى كولمب در نقاط تماس بوده كه

اصطكاك برابر در تمام نقاط تماس و يا فرض الاستيك بودن نقاط تماس و
 مطالعه تأثير توالى اعمال بستها بر پايدارى قطعهكار توسط پثروهشگران




 پايدارى قطعهكار جهت اجتناب از لغزش آن در سيستم جاسازى (صرفا با با


 جاسازى در مرحله اوليه طراحى قيد و بند است. در اين اين مقاله، روشى بر بر إي








 مىشود. چابكى و سريع بودن مدل ارائششده و عدم استفاده از از فرضيات سادهسازى، قابليت استفاده از اين روش را دا در صحتسنجى طرح سار سيستم


قطعهكار در طرح نهايى قيد و بند نمايان مىسازیا

## 2 - مدلسازى

براى يك قطعه در فضاى سه بعدى، شش درجه آز آزادى وجود دارد درد كه بايد

 مجهولات براى محاسبه نيروها در نقاط تماس قطعه و جاسازهما برابر هجده بوده و تعداد معادلات تعادل شش است. براى رفع نامعينى معمولا از فرض



 اين پزوهش، اصل كمينه اندازه نيروها استفاده مى شود. اين اصل بيا بيان مى اردارد

 نيروهاى عكسالعمل در جاسازهاى قيد و بند يك مسأله نامعين استاتيكى استى إنى است. مجموعه فرضيات براى اعمال اين اصل جهت تعيين پايدارى قطعهكار

بهصورت زير است:

- قطعه كار و سيستم جاسازى صلب است. - اصطكاك در نقاط تماس از نوع كولمبى است.

مطرح كرد: جدايش در نقاط تماس قطعهكار و قيد و بند (عدم ارضا قيد دوم)





 يكى از قيود صحتسنجى سيستم جاسازى طراحى




3- مطالهه موردى








 لغزش بر جاسازهاى پايه و عدم پايدارى در تماس توقف مواجه مىسازد. همحنین تمام پره توربينها داراى ريشه هستند كه از آن براى قرار گيرى
 ماشين كارى ريشه ضرورى بوده و فيكسحربندى مناسب بايد از سطح پره انجام شود. مراحل بارگذارى اين قطعهكار در سيستم جاسازى در سه مرحله قابل بيان است.

- تماس قطعه كار با جاسازهاى پايه (شكل a-3)؛ تحت اثر نيرو - ممان



 پايدارى قطعهكار در آن بايد قوى باشد. در اين اين لحظه از بار بار كذارى،




مى كيرد. - تماس با جاساز توقف همراه حفظ تماس با جاسازهاى پايه و كنارى (شكل d-3)؛ در اين كام نيز قطعهكار تحت نيرو - ممانهاى وزا وزن و

$$
\text { جاسازى W W و W W } W_{L_{1}} \text { قرار مى گيرد. }
$$

فرض بر اين است كه قطعهكار داراى جرم 0.6 كيلوگرم مرم بوده و ضريب اصطكاى در تمام نقاط تماس 0.3 است، همحنين سيستم جاسازى

[^2]2- Active-set

تعيين كننده خطى يا غيرخطى بودن بهيندسازى است. اين قيد براى قطعهكار با حالت دوبعدى بلصورت خطى و براى حالت قطعهكار سهبعدى داراى حاى حالت

غيرخطى خواهد بود.
از آنجايى كه در حالت دوبعدى، يكى از مؤلفههاى مماسى از بردار
نيروى عكسالعمل در هر جاساز كم مى مود، نيروى عكسالعمل العـل ايجادشده داراى 2 مؤلفه عمودى و مماسى است. در اين حالت، قيد سوم (اصطكاك الـي

كولمب) بهصورت رابطه (4) مىشود.
$\left|f_{t}\right| \leq \mu\left|f_{n}\right|$
از آنجا كه جهت هريك از مؤلفههاى
اين پارامتر ها يك عدد هستند و لذا، رابطه (4) بهصورت خطى آنى است است در حالت سهبعدى، مؤلفه مماسى دوم در راستاى ${ }^{\text {دا }}$ با به مؤلفههاى عمودى (n) و مماسى اول (t $\left.{ }^{( }\right)$به هريك از نيروها

 كمتر باشد. اين قيد را مىتوان بهصورت رابطه (5) نوشت. $\left(f_{t_{1}}^{2}+f_{t_{2}}^{2}\right)_{i} \leq\left(\mu f_{n}\right)_{i}^{2}$
اين معادله، يك رابطه غيرخطى بين راني
 ماتريس تبديل Tاز رابطه (6) بهدست میى آيد.
$T=\left(T_{1}, T_{2}, . ., T_{6}\right)$
$T_{i}=\left(T_{n}, T_{t_{1}}, T_{t_{2}}\right)$
$\left(T_{n}\right)_{i}=\left(n_{i}, r_{i} \times n_{i}\right),\left(T_{t_{1}}\right)_{i}=\left(t_{1_{i}}, r_{i} \times t_{1_{i}}\right),\left(T_{t_{2}}\right)_{i}$

$$
\begin{equation*}
=\left(t_{2_{i}}, r_{i} \times t_{2_{i}}\right) \tag{6}
\end{equation*}
$$

در اين معادلات، $T_{i}$ ماتريس تبديل مختصات محلى به جهانى براى نقطه






 پاسخى براى اين مسأله بهدست نيايد، نشاندهنده عدم ارضا يكى از از قيود سهكانه است. عدم پايدارى قطعهكار در قيد و بند را مىتوان به دو صورت


Fig. 1 The model with freeform geometry with the designed locating system adapted for mathematical modeling of stability analysis with minimum norm principle
شكل 1 مدل شكل - آزاد همراه با طرح جاسازى براى مدلسازى آناليز پايدارى با
استفاده از اصل كمترين اندازه نيروها

پيشنهادى (بدون آناليز پايدارى) براى قطعهكار محاسبه و تعيين شده است. موقعيت نقاط جاسازى محاسبهشده در جدول 1 ارائه شده و نقطه مر مركز اريز ثقل
قطعهكار (14.73, 0.56-, ,88.95) است.

1-3 - قطعهكار در تماس با جاسازهاى پايه


 پايدارى قطعهكار بررسى مىشود. دستگاه مختصات جهانى روى قطعهكار نصب شده و همراه با تغيير موقعيت و جهت قار قطعهكار، تغيير مى كند. به عبارت ديگر، مقادير موقعيت نقاط جاسازى، بردارهاى نرمال و مماسى نخست
 محدوده پايدارى قطعهكار روى جاسازهاى پايه كافى است جاه تغيير كرده و مسأله براى هر شكلار بندى حل حل شود. براى اين منظور مدل
 فرض بر اين شد كه ارتفاع جاسازها به كونهاى تنظيم شود كار كه قطعها







 [ بهصورت $38^{\circ}$ > $22^{\circ}$ بهددست مى آيد كه در شك

محدوده هاشورخورده بين



## 

 جاسازهاى كنارى قرار دارد. اين موقعيت براى اين منظور انتخاب شده است

$$
\text { جدول } 1 \text { موقعيت نقاط جاسازى قطعهكار شكل } 2 \text { همراه با بردارهاى نرمال، مماسى }
$$

نخست و دوم (طرح جاسازى اصلى)
Table 1 The position of the locating points for model of Fig. 2 beside the normal, the first tangential and second tangential vectors

| 6 | 5 | 4 | 3 | 2 | 1 | شمار0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 171.03 | 2.46 | 180.00 | 180.00 | 0.00 | - |
| -10 | 46.32 | 44.39 | 44.77 | -52.32 | -12.53 |  |
| -9 | -8.75 | -22.63 | -8.85 | 17.71 | -16.16 | (mm) |
| -1.00 | 0.01 | 0.03 | 0.08 | -0.01 | 0.03 | ر |
| 0.00 | 0.82 | 0.86 | 0.23 | -0.91 | -0.33 | برار |
| 0.00 | -0.57 | -0.49 | -. 97 | -0.41 | -0.94 | ( $n$ ) |
| 0.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | بردار مماسى |
| -1.00 | 0.01 | 0.01 | 0.01 | -0.05 | -0.04 |  |
| 0.00 | 0.08 | 0.08 | 0.08 | 0.07 | 0.05 | اول |
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | بردار مماسى |
| 0.00 | 0.57 | 0.49 | 0.97 | 0.41 | 0.94 |  |
| -1.00 | 0.82 | 0.87 | 0.23 | -0.91 | -0.33 | دوم |



Fig. 2 Case study: loading of turbine blade model into the fixture شكل 2 مطالعه موردى بار گذارى پره توربين در سيستم جاسازى


Fig. 3 The procedure of workpiece loading into the fixture a) resting on the base locators $b$ ) the position of nearly contact the side locators $c$ ) making contact with the side locators while keeping contact with the base locators d) making contact with the stop locators while keeping contact with the base and side locators
شكل 3 مراحل بار گذارى قطعه كار در قيد الف) تماس با جاسازهاى پايه ب) موقعيت
 توقف
(2)


Fig. 5 The calculated stability area for work piece on the base locators (the hatched area between $L_{1} \& L_{2}$ )

$$
\text { شكل } 5 \text { محدوده جاسازى پايدار قطعهكار بر جاسازهاى پايه }
$$

تأثير آن بر پايدارى قطعه در موقعيت مزبور بررسى مىشود.

 نشاندهنده پايدارى قطعه كار بر جاسازهاى پايه است. مقادير اين نيروها جدول 2 نشان داده شده است. براى اين محاسبه، مقدار بردار گرانش به صورت [ $\left.0,-\sin 23^{\circ},-\cos 23^{\circ}\right]$ استفاده مىشود كه از مدل سهبعدى در نرمافزار مدلسازى بهدست آمده است. $W_{L}=\left|W_{L}\right| \times$ مطابق با شكل b-3، نيرو - ممان بارگذارى بهصورت ( $\left.0, \cos \left(60^{\circ}\right),-\sin \left(60^{\circ}\right)\right) N$
 براى مقادير مختلف $\left|W_{L}\right|$ حل شده و مقدار كمترين شدت $\left|W_{L}\right|$ كه قطعه با
 بالا، كمترين مقدار اندازه نيرو براى آغاز حركت قطعهكار (آغاز لغزش قطعهكار بر جاسازهاى پايه) برابر با 1.54 نيوتن بهدست مىآيد. آير لازم بذكر است كه
 براى اجراى مقايسه، طرح جاسازى دوم با نزديکكردن نقاط جاسازى پايه به يكديگر مطابق شكل 6 پيشنهاد مىشود. اين طرح جاسازى براى مطالعه تأثير فاصله جاسازها از هم، بر كمترين مقدار نيروى لازم براى شروع
لغزش روى جاسازهاى پايه ارائه مىشود.


$$
\text { در هر يكى از آنها در جدول } 3 \text { ارائه شده است. }
$$

با اعمال نيرو - ممان مشابه با طرح جاسازى پيشين بر قطعه كار در طرح
$\left.W_{L}=\left|W_{L}\right| \times\left(0, \cos \left(60^{\circ}\right),-\sin \left(60^{\circ}\right)\right) N\right)$ جاسازى دوم بهصورت در نقطه (90, -43.57, 25.16) و با فرض 0N مقدار نيروى لازم براى شروع لغزش قطعهكار روى جاسازهاى پايه برابر با 0.1 نيوتن بهدست مى آيد. مقدار بسيار كم بـهدستآمده نشاندهنده پايدارى ضعيف قطعهكار در نقطه نزديك به تماس با جاسازهاى كنارى است. دليل اين پديده، نزدیی بودن بيش از حد جاسازهاى پایه به

جدول 2 مقادير نيروهاى عكسالعمل در موقعيت نزديكى به تماس با جاسازهاى
كنارى (شكل b-3) با احتساب صرفا نيرو - ممان وزن

Table 2 The reaction forces at the base locators in position near to making contact with the side locators

| 3 | 2 | 1 | شماره جاساز |
| :---: | :---: | :---: | :---: |
| 2.95 | 1.25 | 2.20 | (N) |
| -0.04 | 0.25 | -0.60 |  |
| 0.12 | -0.27 | -0.66 |  |



Fig. 4 The different potential resting condition of workpiece on the base locators (by changing the $g$ vector at the global XYZ coordinate system)
شكل 4 نحوه قرارگيرى قطعهكار بر جاسازهاى پايه تحت زواياى مختلف (با تغيير
بردار گرانش در دستگاه مختصات جهانى)
كه قطعهكار در آن بايد پايدارى بالايى داشته باشد. براى تعيين پایدارى و مطالعه تأثير فاصله جاسازهاى پايه از هم بر آن، طرح جاسازى دالیى دوم (شكل 6) پيشنهاد مىشود. در اين طرح، جاسازهاى پايه به يكديگر نزديكتر شده و

جدول 4 مقادير نيروهاى عكسالعمل در مرحله دوم بار گذارى (شكل c-3)
Table 4 The reaction forces at the five locators for the second stage of loading (Fig. 3c)

| 5 | 4 | 3 | 2 | 1 | شماره |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.36 | 3.00 | 4.55 | 1.06 | 4.21 | نيروها |
| 0.09 | 0.32 | -0.12 | 0.08 | -0.11 | $(\mathrm{~N})$ |
| -0.06 | -0.84 | -1.31 | -0.30 | -1.26 |  |

4-3- 3- قطعهكار در تماس با جاسازهاى پایه، كنارى و توقف در مرحله آخر از جاسازى، قطعهكار بايد با لغزش بر جاسازهاى پایه و كنارى، با جاساز توقف تماس پيدا كند. براى اين منظور، با اعمال دو نيرو - ممـان بهصورت مر نقـطه $W_{L_{2}}=10 \times(-1,0,0) \mathrm{N} \quad$ (90, $\left.-43.57,25.16\right)$ d-3 (180, -11.8, -4.65)، قطعهكار در تماس با تمام شش جاساز در شكل قرار مى گيرد. اگر مسأله بهينهسازى براى اين شكلبندى نيز حل شود، جوابى معين براى مقادير نيروهاى عكسالعمل بهدست مىآيد كه در جدول 5 نشان

داده شده است.
با توجه به اين كه قطعه كار در تمام مراحل بار گذارى در حالت پايدار در قيد قرار مى گيرد، بنابراين سيستم جاسازى اصلى طراحىشده براى اين
 بهينهسازى منتج به جواب براى نيروهاى عكسالعمل نشود، نشاندهنده وجود لغزش يا جدايش قطعه كار از كمينه يكى از جاسازهاست.

4 - نتيجه گيرى

 بهينهسازى غيرخطى جهى قطعهار و سيستم جاسازى پيشنهماد شد كه با حل آل آن توسط نرمافرافزار متلب،




 سيستم جاسازى و نقاط تماس آن پايدار است. براى مدل ياد آشده با فرا فرض






 بود. با بررسى پايدارى قطعهكار در تمام مراحل جاس كه سيستم جاسازى اصلى صحيح بوده و پايدارى كامل قطعهكار را فراهر اهم

جدول 5 مقادير نيروهاى عكسالعمل در مرحله سوم بار كذارى (شكل d-3) Table 5 The reaction forces at the six locators for the third stage of loading (Fig. 3d)

| 6 | 5 | 4 | 3 | 2 | 1 | 0 شماره |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.38 | 2.16 | 1.96 | 1.48 | 4.00 | 3.35 | 10.10 |
| -0.38 | -0.04 | -0.04 | -0.03 | -0.40 | -0.10 | $(\mathrm{~N})$ |
| -1.72 | 0.64 | 0.58 | 0.44 | 1.13 | 1.00 |  |



Fig. 6 The second locating plan with base locators near together for studying the effect of base locators distances on the workpiece stability شكل 6 طرح جاسازى دوم (با جاسازهاى پايه نزديك به هم) براى مطالعه تأثير فاصله جاسازهاى پایه از هم روى پايدارى قطعهكار

جدول 3 موقعيت نقاط جاسازى پايه قطعهكار در طرح جاسازى دوم (جاسازهاى پايه نزديك به هم) همراه با برداهاى نرمال و مماسى نخست و دوم
Table 3 The pose of the locators in the second locating plan besides the normal and the first and second tangential vectors

| 6 | 5 | 4 | 3 | 2 | 1 | شماره |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 171.03 | 2.46 | 144.25 | 150.89 | 10.39 | مختصات <br> (mm) |
| -10 | 46.32 | 44.39 | 34.11 | -25.30 | 6.75 |  |
| -9 | -8.75 | -22.63 | -13.49 | -6.74 | -20.82 |  |
| -1.00 | 0.04 | 0.03 | -0.07 | -0.04 | 0.02 | بردار نرمال <br> (n) |
| 0.00 | 0.82 | 0.86 | -0.13 | 0.17 | 0.40 |  |
| 0.00 | -0.57 | -0.49 | 0.99 | 0.98 | 0.91 |  |
| 0.00 | 0.99 | 0.99 | 0.00 | 0.00 | 0.00 | $\begin{array}{r} \text { بردار مماسى }\left(t_{1}\right) \\ \end{array}$ |
| -1.00 | 0.01 | 0.01 | 0.99 | 0.98 | 0.91 |  |
| 0.00 | 0.08 | 0.08 | 0.13 | -0.17 | -0.40 |  |
| 0.00 | 0.00 | 0.00 | 0.99 | 0.99 | 0.99 | بردار مماسى$\text { دوم ( }{ }^{2}$ |
| 0.00 | 0.57 | 0.49 | 0.00 | -0.02 | -0.05 |  |
| -1.00 | 0.82 | 0.87 | 0.07 | 0.05 | 0.05 |  |

يكديگر و عدم رعايت كمترين فاصله بين نقطه مركز ثقل قطعهكار و نقطه ميانى مثلث متشكل از جاسازهاى پايه است طرح جاسازى دوم صرفا براى مطالعه تأثير فاصله جاسازهاى پایه بر پايدارى قطعهكار ارائه شد و فقط در همين مرحله از بارگذارى استفاده مىشود. براى ادامه بارگذارى، از طرح جاسازى اصلى (شكل 2 و جدول 1)
استفاده مى شود.

## 3-3-3 - قطعهكار در تماس با جاسازهاى پايه و كنارى


 (90, -43.57, , ${ }^{\text {ن نقطه }} W_{L}=5 \times\left(0, \cos \left(60^{\circ}\right),-\sin \left(60^{\circ}\right)\right) \mathrm{N}$ (25.16 از شكل c-3، قطعهكار در تماس با جا جاسازهاى كنارى قرار مى گيرد. فرض بر اين است كه بردار گرانش بهصورت [10²5


 با جدول 4 براى نيروهاى عكسالعمل دا دا در جا جاسازها با بهدست مىآيد، قطعهكار در پايدارى كامل در تماس بار با جاسازهاست
 و كنارى قرار گرفته است.

## 6-مر اجع

[1] H. Wang, Y. Rong, H. Li, P. Shaun, Computer aided fixture design: recent research and trends, Computer Aided Design, Vol. 42, No. 12, pp. 1085-1094 2010.
[2] Y. Kang, Y. Rong, J. C. Yang, Computer-aided fixture design verification. Part 1. The framework and modelling, Advanced Manufacturing Technology, Vol. 21, No. 10, pp. 827-835, 2003.
[3] I. Boyle, Y. Rong, D. C. Brown, A review and analysis of current computeraided fixture design approaches, Robotics and Computer-Integrated Manufacturing, Vol. 27, No. 1, pp. 1-12, 2011.
[4] Y. C. Chou, V. Chandru, M. M. Barash, A mathematical approach to automatic configuration of machining fixtures: analysis and synthesis, Manufacturing Science and Engineering, Vol. 111, No. 4, pp. 299-306, 1989.
[5] M. S. Ohwovoriole, B. Roth, An extension of screw theory, mechanical design, Vol. 103, No. 4, pp. 725-735, 1981.
[6] S. H. Lee, M. R. Cutkosky, Fixture planning with friction, Manufacturing Science and Engineering, Vol. 113, No. 3, pp. 320-327, 1991.
[7] C. Cogun, The importance of the application sequence of clamping forces on workpiece accuracy, Manufacturing Science and Engineering, Vol. 114, No. 4, pp. 539-543, 1992.
[8] Y. Wu, Y. Rong, W. Ma, S. R. LeClair, Automated modular fixture planning: Accuracy, clamping, and accessibility analyses, Robotics and Computer-Integrated Manufacturing, Vol. 14, No. 1, pp. 17-26, 1998.
[9] U. Roy, J. Liao, Fixturing analysis for stability consideration in an automated fixture design system, manufacturing science and engineering, Vol. 124, No. 1, pp. 98-104, 2002.
[10] Y. Kang, Y. Rong, J. C. Yang, Computer-aided fixture design verification. Part 3. Stability analysis, Advanced Manufacturing Technology, Vol. 21, No. 10-11, pp. 842-849, 2003.
[11] M. Y. Wang, D. M. Pelinescu, Contact force prediction and force closure analysis of a fixtured rigid workpiece with friction, manufacturing science and engineering, Vol. 125, No. 2, pp. 325-332, 2003.
[12] J. N. Asante, Effect of fixture compliance and cutting conditions on workpiece stability, Advanced Manufacturing Technology, Vol. 48, No. 1-4, pp. 33-43, 2010.
[13] J. Bohg, A. Morales, T. Asfour, D. Kragic, Data-driven grasp synthesis-a survey. IEEE Transactions on Robotics, Vol. 30, No. 2, pp. 289-309, 2014.
[14] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki, D. Kragic, Assessing grasp stability based on learning and haptic data, IEEE Transactions on Robotics, Vol. 27, No. 3, pp. 616-629, 2011.
[15] M. Madry, L. Bo, D. Kragic, D. Fox, ST-HMP: Unsupervised spatiotemporal feature learning for tactile data, in Proceeding of IEEE International Conference on Robotics and Automation (ICRA), Hong Kong: IEEE, pp. 2262-2269, 2014.
[16] Y. Bekiroglu, D. Song, L. Wang, D. Kragic, A probabilistic framework for task-oriented grasp stability assessment, in Proceeding of IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe: IEEE, pp. 30403047, 2013.
[17] H. Dang, P. K. Allen, Stable grasping under pose uncertainty using tactile feedback. Autonomous Robots, Vol. 36, No. 4, pp. 309-330, 2014.
[18] E. Nikandrova, J. Laaksonen, V. Kyrki, Towards informative sensor-based grasp planning, Robotics and Autonomous Systems, Vol. 62, No. 3, pp. 340354, 2014.
[19] H. Parvaz, M. J. Nategh, Analytical model of locating system design for parts with free-form surfaces, Modares Mechanical Engineering, Proceedings of the Advanced Machining and Machine Tools Conference, Vol. 15, No. 13, pp. 129-133, 2015. (in Persian فارسى)
[20] H. Parvaz, M. J. Nategh, A pilot framework developed as a common platform integrating diverse elements of computer aided fixture design, Production Research, Vol. 51, No. 22, pp. 6720-6732, 2013.

استفاده از اصل كمينه اندازه نيروها براى تعيين پايدارى قطعهكار تحت
نيروهاى ناشى از اعمال بست و ماشين كارى بهعنوان پيشنهادى براى ادامه
پزوهش در اين زمينه مطرح مىشود.


مؤلفههاى بردار نيروى عكسالعمل $\quad$ (العمل
بردار نيروى عكسالعمل در هريك از جاسازها
بردار گرانش $\quad g$
كران پايین محدوده پايدارى
كران بالاى محدوده پایدارى $\quad L_{2}$
بردار نرمال براى نقطه تماس ان الان
بردار موقعيت $\quad$ r
ماتريس تبديل $\quad T$
بردار مماسى نخست براى نقطه تماس اiم
بردار مماسى دوم براى نقطه تماس اiم
نيروممان اعمالى $\quad$ W
علائم .يونانى
زاويه بردار گرانش در صفحه YZ $\quad \theta$

بردار نيروهاى عكسالعمل در تمام جاسازها
زيرنويسها
پارامتر اعمالى خارجى بر قطعهكار $\quad e$
انديس گرانش $\quad g$
شماره جاساز $\quad i$
انديس پارامتر بار گذارى
$\quad L_{1}$
انديس پارامتر بار گذارى دوم
انديس جهت نرمال (عمود) $\quad n$
انديس جهت مماسى نخست
انديس جهت مماسى دوم


[^0]:    2- Wrench

[^1]:    1- Partially Observed Markov Decision Processes (POMDP)

[^2]:    1- Fmincon

